
Weighted Kernel Regression
for Predicting Changing Dependencies

Steven Busuttil and Yuri Kalnishkan

Computer Learning Research Centre and Department of Computer Science,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, United Kingdom.
{steven,yura}@cs.rhul.ac.uk

Abstract. We want to make predictions in the online mode of learning
for data where the dependence of the outcome y on the signal x can
change with time. Standard regression techniques give all training ex-
amples the same weight; however, it is clear that older examples are less
representative of the current dependency. Therefore, we require methods
that consider the information content of examples to decay with time.
We propose two methods for doing this: one naive and another, which
is based on the Aggregating Algorithm (AA). Surprisingly these two
techniques are computationally similar. To measure the empirical per-
formance of these new methods, we perform experiments on options im-
plied volatility data provided by the Russian Trading System Stock Ex-
change (RTSSE). In these experiments our methods perform better than
the proprietary state-of-the-art technique currently used at the RTSSE.

1 Introduction

Consider the case where we are given signal-outcome (x, y) pairs (or examples)
where the dependency of y on x can change with time. An example of this is
when we want to predict financial option implied volatility which depends on the
strike price and the time to maturity (for more information see [1]). Predicting
the implied volatility of options is our main example and inspiration, but the
methods we propose are not limited to it. Standard regression techniques, like
Ridge Regression, treat all training examples equally, while we want recent ex-
amples to be given more importance in the same spirit of GARCH. GARCH [1,
Chap. 19]) is a technique used in finance that uses weights that increase expo-
nentially. It is usually applied to historical volatility.

In Sect. 3 we propose two new methods for achieving this. One is based
on previous work in regression, which we modify to include weights, and the
other is an application of the Aggregating Algorithm (AA) [2]. The Aggregating
Algorithm optimally merges experts’ predictions. In this case we apply it to
all the linear predictors that can change with time. Kernels are then used to
introduce nonlinearity. Empirical results in Sect. 4 on options implied volatility
data show that our methods perform well.

2 Background

2.1 Online Linear Regression

We can define online regression by the following protocol. At every moment in
time t = 1, 2, . . . , the value of a signal xt ∈ X arrives. Statistician (or Learner) S
observes xt and then outputs a prediction γt ∈ R. Finally, the outcome yt ∈ R
arrives. The set X is a signal space which is assumed to be known to Statistician
in advance. We will be referring to a signal-outcome pair as an example.

The performance of S is measured by the sum of squared discrepancies be-
tween the predictions and the outcomes (known as square loss). Therefore on
trial t Statistician S suffers loss (yt−γt)2. The losses incurred over several trials
sum up to the overall loss. Thus after T trials, the total loss of S is

LT (S) =
T∑

t=1

(yt − γt)2 .

Clearly, a smaller value of LT (S) means a better predictive performance.
In linear regression we are interested in the case where X = Rn. Let us model

the data by the linear equation1

yt = 〈w,xt〉+ εt , (1)

where w ∈ Rn and εt ∈ R is some noise.
The method of Least Squares (LS) was derived independently by Legendre

and Gauss in 1805 and 1809 respectively. At time T it aims to find a solution
to (1) (i.e., a wL) that minimises the overall sum of square losses over the pre-
viously seen examples

LT (LS) =
T−1∑
t=1

(yt − 〈wL,xt〉)2 .

This translates to solving the system of linear equations

wL = (X′X)−1X′y ,

where X = (x1, . . . ,xT−1)
′ and y = (y1, . . . , yT−1)

′.
Least Squares runs into problems when some features in X are highly corre-

lated because the matrix X′X becomes close to singular, resulting in unstable
solutions. Ridge Regression (RR), first introduced to statistics in [3], differs from
Least Squares in that at time T its objective is to minimise

LT (RR) = a‖wR‖2 +
T−1∑
t=1

(yt − 〈wR,xt〉)2 ,

1 As usual, all vectors are identified with one-column matrices and B′ stands for the
transpose of matrix B.

where a is a fixed positive real number. RR’s solution is

wR = (aI + X′X)−1X′y ,

where I is the identity matrix2. Apart from stabilising the solution (since a > 0
the matrix (aI + X′X) is positive definite and therefore nonsingular), this tech-
nique also includes regularisation in that it favours a wR with smaller elements.
This reduces the complexity of the solution, decreasing the risk of overfitting the
training data, and consequently generalises better.

2.2 The Aggregating Algorithm (AA)

In this section we will be giving an overview of the Aggregating Algorithm (AA)
mostly following [2, Sects. 1 and 2]. Let Ω be an outcome space, Γ be a prediction
space and Θ be a (possibly infinite) pool of experts. We consider the following
game between Statistician (or Learner) S, Nature, and Θ:

for t = 1, 2, . . . do
Every expert θ ∈ Θ makes a prediction γ

(θ)
t ∈ Γ

Statistician S observes all γ
(θ)
t

Statistician S outputs a prediction γt ∈ Γ
Nature outputs ωt ∈ Ω

end for
Given a fixed loss function λ : Ω × Γ → [0,∞], Statistician aims to suffer
a cumulative loss LT (S) =

∑T
t=1 λ(ωt, γt) that is not much larger than the

loss LT (θ) =
∑T

t=1 λ(ωt, γ
(θ
t)) of the best expert θ ∈ Θ. The AA takes two

parameters, a prior probability distribution P0 in the pool of experts Θ and a
learning rate η > 0. Let β = e−η.

We will first describe the Aggregating Pseudo Algorithm (APA) that does not
output actual predictions but generalised predictions. A generalised prediction
g : Ω → R is a mapping giving a value of loss for each possible outcome. At
every step t, the APA updates the experts’ weights such that those that suffered
large loss during the previous step have their weights reduced and vice-versa:

Pt(dθ) = βλ(ωt,γ
(θ)
t)Pt−1(dθ), θ ∈ Θ .

At time t, the APA chooses a generalised prediction by

gt(ω) = logβ

∫
Θ

βλ(ω,γ
(θ)
t)P ∗

t−1(dθ) ,

where P ∗
t−1(dθ) = Pt−1(dθ)/Pt−1(Θ). This guarantees that for any learning

rate η > 0, prior P0, and T = 1, 2, . . . (see [2, Lemma 1])

LT (APA) = logβ

∫
Θ

βLT (θ)P0(dθ) . (2)

2 In general, we will not be specifying the rank of identity matrices.

To get a prediction from the generalised prediction gt(ω) (note that we use ω
since we do not yet know the real outcome of step t, ωt) the AA uses a substitu-
tion function Σ mapping generalised predictions into Γ . A substitution function
may introduce extra loss; however, in many cases perfect substitution is possible.
We say that the loss function λ is η-mixable if there is a substitution function
Σ such that

λ(ωt, Σ(gt(ω))) ≤ gt(ωt) (3)

on every step t, all experts’ predictions and all outcomes. The loss function λ is
mixable if it is η-mixable for some η > 0.

Suppose that our loss function is η-mixable. Using (3) and (2) we can obtain
the following upper bound on the cumulative loss of the AA:

LT (AA) ≤ logβ

∫
Θ

βLT (θ)P0(dθ) .

The Square Loss Game. In this paper we are concerned with the (bounded)
square loss game (see [2, Sect 2.4]), where Ω = [−Y, Y], Y ∈ R, Γ = R,
and λ(ω, γ) = (ω − γ)2. The square loss game is η-mixable if and only if η ≤
1/(2Y 2). A perfect substitution function for this game is

γ =
g(−Y)− g(Y)

4Y
. (4)

The Aggregating Algorithm for Regression. The AA was applied to the
problem of linear regression resulting in the Aggregating Algorithm for Regres-
sion (AAR). AAR merges all the linear predictors that map signals to out-
comes [2, Sect. 3] (a Gaussian prior is assumed on the pool of experts). This
results in the following solution to the regression problem

wA = (aI + X̃
′
X̃)−1X̃

′
ỹ , (5)

where X̃ = (x1,x2, . . . ,xT)′ and ỹ = (y1, y2, . . . , yT−1, 0)′. It can be shown
(see [4]) that at time T the AAR solution wA minimises

LT (AAR) = a‖wA‖2 + 〈wA,xT 〉2 +
T−1∑
t=1

(yi − 〈wA,xt〉)2 .

The main property of AAR is that it is optimal in the sense that the total loss
it suffers is only a little worse than that of any linear predictor. By the latter we
mean a strategy that predicts θ′xt on every trial t, where θ ∈ Rn is some fixed
vector. The set of all linear predictors may be identified with Rn.

It is interesting to note that AAR’s bound does not make any assumptions on
the probability distribution of the data. From (5) it is clear that in computational
terms AAR is similar to Ridge Regression but with the signal-outcome pair
(xT , 0) added to its training set, where xT is the new signal for which a prediction
is to be made. This makes predictions shrink towards 0, with the goal of making
them even more resistant to overfitting (it is assumed that the mean of the
outcomes is 0).

2.3 Kernel Methods

The use of linear methods like RR and AAR in the real world is limited since they
can only model simple linear dependencies. The kernel trick (first used in this
context in [5]) is now a widely used technique which can make a linear algorithm
operate in feature space without the inherent complexities. For a function k :
X×X → R to be a kernel it has to be symmetric, and for all ` and all x1, . . . ,x` ∈
X, the kernel matrix K = (k(xi,xj))i,j , i, j = 1, . . . , ` must be positive semi-
definite (have nonnegative eigenvalues). Equivalently, a kernel function k takes
two vectors and returns their dot product in some feature space, k(xi,xj) =
〈φ(xi), φ(xj)〉, where φ is a (nonlinear) transformation to feature space.

Through kernel functions it is therefore possible to perform linear regression
in feature space which would be equivalent to performing nonlinear regression
in input space. Accordingly, RR and AAR have been reduced into a formulation
known as dual variables (see [6] and [7] respectively), where all the signals appear
only in dot products. This makes transforming the linear models into nonlinear
ones simply a matter of replacing the dot products with a kernel function. The
resulting methods, which we shall call Kernel Ridge Regression (KRR) and the
Kernel Aggregating Algorithm for Regression (KAAR), respectively calculate
the prediction γ for a new example xT as follows:

γKRR = y′(aI + K)−1k , (6)

where k = (k(xi,xT)) and K = (k(xi,xj))i,j , i, j = 1, . . . , T − 1, and,

γKAAR = ỹ′(aI + K̃)−1k̃ ,

where ỹ = (y′, 0)′, K̃ = (k(xi,xj))i,j , i, j = 1, . . . , T , and k̃ =
(
k′, k(xT ,xT)

)′.
2.4 Controlled KAAR

Controlled KAAR (CKAAR) [4] is a generalisation of both KRR and KAAR. At
time T the linear version of CKAAR aims to find a solution wC that minimises

LT (CKAAR) = a‖wC‖2 + b〈wC,xT 〉2 +
T−1∑
i=1

(yi − 〈wC,xi〉)2 ,

where b ≥ 0. It is clear that when b = 0, CKAAR is equivalent to RR and
conversely, equivalent to AAR when b = 1. Empirical results in [4] suggest that
in general, the performance of CKAAR is as good as or better than that of both
KAAR and KRR. The linear CKAAR solution to the regression problem is

wC = (aI + X̂
′
X̂)−1X̂

′
ỹ ,

where X̂ = (X′,
√

bxT)′ and ỹ = (y1, y2, . . . , yT−1, 0)′. The kernel version of
CKAAR makes a prediction for a new signal xT in the following way:

γCKAAR = ỹ′(aI + K̂)−1k̂ ,

where k̂ =
(
k′,
√

b k(xT ,xT)
)′

and K̂ =
[

K
√

bk√
bk′ b k(xT ,xT)

]
.

3 Weighted Kernel Regression

3.1 WeCKAAR

We propose using a modified version of CKAAR, which we call Weighted CK-
AAR (WeCKAAR) to make predictions where the underlying dependency of
outcomes on signals can change with time. We simply introduce a decaying fac-
tor, such that old transactions are given less importance. Therefore, the objective
is to find a w that minimises

LT (W) = a‖w‖2 + b〈w,x〉2 +
T−1∑
t=1

dt(yt − 〈w,xt〉2) , (7)

where dt ∈ R are nonnegative weights that increase with t. Let dT = b and D =
diag(d1, . . . , dT) be the diagonal matrix with elements d1 . . . dT . Equation (7)
can be rewritten as

LT (W) = a‖w‖2 +
(
ỹ − X̃w

)′
D
(
ỹ − X̃w

)
= aw′w + ỹ′Dỹ + w′X̃

′
DX̃w − 2w′X̃

′
Dỹ .

If we differentiate this with respect to w, divide throughout by 2 and make it
equal to zero, we get

1
2

∂LT (W)
∂w

= aw + X̃
′
DX̃w − X̃

′
Dỹ = 0 .

This implies that w =
(
X̃
′
DX̃ + aI

)−1

X̃
′
Dỹ.

Dual (Kernel) Form. Using Lemma 1 we can obtain a form of WeCKAAR’s
prediction where signals appear only in dot products. Accordingly, a prediction
for the signal xT is

γT = w′xT = ỹ′
√

D
(√

DX̃X̃
′√

D + aI
)−1√

DX̃xT ,

where
√

D = diag(
√

d1, . . . ,
√

dT). We now apply the kernel trick by replacing
dot products with kernel functions k to obtain the kernel version of WeCKAAR:

γT = ỹ′
√

D
(√

DK̃
√

D + aI
)−1√

Dk̃ , (8)

where

√
DK̃

√
D =

d1k(x1,x1)

√
d1d2k(x1,x2) · · ·

√
d1dT k(x1,xT)√

d2d1k(x2,x1) d2k(x2,x2) · · ·
√

d2dT k(x2,xT)
...

...
. . .

...√
dT d1k(xT ,x1)

√
dT d2k(xT ,x2) · · · dT k(xT ,xT)

 .

3.2 KAARCh

For our second new method, we apply the Aggregating Algorithm (AA) to the
regression problem where the experts can change with time. We call this method
the Kernel Aggregating Algorithm for Regression with Changing underlying de-
pendencies (KAARCh). The main idea behind this method is to apply the Ag-
gregating Algorithm to the case where the pool of experts is made up of all linear
predictors that can change with time. We assume that outcomes are bounded
by Y , therefore, for any t, yt ∈ [−Y, Y] (we do not require our algorithm to
know Y). We are interested in the square loss, therefore we will be using opti-
mal η = 1/(2Y 2) and substitution function (4).

An expert is a sequence θ1, θ2, . . ., that at time T predicts

x′T (θ1 + θ2 + . . . + θT) ,

where for any t, θt ∈ Rn and xt ∈ Rn. To apply the AA to this problem we need
to define a lower triangular block matrix L, and θ which is a concatenation of
all the θt for t = 1 . . . T , such that

Lθ =

I 0 · · · · · · 0

I I
. . .

...
...

...
.

...
I I · · · I 0
I I · · · I I

θ1

θ2

...
θT−1

θT

 =

θ1

θ1 + θ2

...
θ1 + θ2 + · · ·+ θT−1

θ1 + θ2 + · · ·+ θT−1 + θT

 .

The matrices I and 0 in L are the n×n identity and all-zero matrices respectively.
We also need to define zt which is xt padded with zeros in the following way

zt =

[
0 · · · 0︸ ︷︷ ︸ x′t 0 · · · 0︸ ︷︷ ︸

n(t− 1) n(T − t)

]′
so that z′tLθ = x′t(θ1 + θ2 + . . . + θt) .

Let a > 0 be an arbitrary constant. Consider the prior distribution P0 in the
set RnT of possible weights θ with the Gaussian density

P0(dθ) =
(aη

π

)nT/2

e−aη
PT

t=1 ‖θt‖2
dθ .

The loss of θ over the first T trials is

LT (θ) =
T∑

t=1

(yt − z′tLθ)2 = θ′L′

(
T∑

t=1

ztz′t

)
Lθ − 2

(
T∑

t=1

ytz′t

)
Lθ +

T∑
t=1

y2
t .

Therefore, the loss of the APA is (recall that β = e−η)

LT (APA) = logβ

∫
RnT

βLT (θ)P0(dθ)

= logβ

∫
RnT

(aη

π

)nT/2

e−η(θ′L′(PT
t=1 ztz

′
t)Lθ−2(PT

t=1 ytz
′
t)Lθ+

PT
t=1 y2

t +θ′aIθ)dθ

= logβ

∫
RnT

(aη

π

)nT/2

e−ηθ′(L′ PT
t=1 ztz

′
tL+aI)θ+2η(PT

t=1 ytz
′
t)Lθ−η

PT
t=1 y2

t dθ .

Given the generalised prediction gT (ω) which is the APA’s loss with variable
ω ∈ R replacing yT and using substitution function (4), the AA’s prediction is

γT =
1

4Y
logβ

βgT (−Y)

βgT (Y)

=
1

4Y
logβ

∫
RnT e−ηθ′(L′ PT

t=1 ztz
′
tL+aI)θ+2η(PT−1

t=1 ytz
′
tL−Y z′T L)θdθ∫

RnT e−ηθ′(L′ PT
t=1 ztz′tL+aI)θ+2η(PT−1

t=1 ytz′tL+Y z′T L)θdθ
.

Let Q1(θ) = θ′
(
L′∑T

t=1 ztz′tL + aI
)

θ−2
(∑T−1

t=1 ytz′tL− Y z′T L
)

θ, and Q2(θ) =

θ′
(
L′∑T

t=1 ztz′tL + aI
)

θ − 2
(∑T−1

t=1 ytz′tL + Y z′T L
)

θ. By Lemma 2

γT =
1

4Y
logβ

e−η minθ∈RnT Q1(θ)

e−η minθ∈RnT Q2(θ)
=

1
4Y

(
min

θ∈RnT
Q1(θ)− min

θ∈RnT
Q2(θ)

)
.

Finally, by using Lemma 3 we get

γT =
T−1∑
t=1

ytz′tL

(
L′

T∑
t=1

ztz′tL + aI

)−1

L′zT . (9)

Dual (Kernel) Form. Equation (9) can be rewritten in matrix notation γT =

y′ZL
(
L′Z̃

′
Z̃L + aI

)−1

L′zT , where Z = (z1, z2, . . . , zT−1)′ and Z̃ = (Z′, zT)′.
We can get a dual formulation of this by using Lemma 1:

γT = ỹ′
(
Z̃LL′Z̃

′
+ aI

)−1

Z̃LL′zT .

Since all signals appear in dot products, we can use the kernel trick to introduce
nonlinearity. In this case we get

γT = ỹ′
(
K̄ + aI

)−1
k̄ , (10)

where

K̄ =

k(x1,x1) k(x1,x2) k(x1,x3) · · · k(x1,xT)
k(x2,x1) 2k(x2,x2) 2k(x2,x3) · · · 2k(x2,xT)
k(x3,x1) 2k(x3,x2) 3k(x3,x3) · · · 3k(x3,xT)

...
...

...
. . .

...
k(xT ,x1) 2k(xT ,x2) 3k(xT ,x3) · · · Tk(xT ,xT)

 , k̄ =

k(x1,xT)
2k(x2,xT)
3k(x3,xT)

...
Tk(xT ,xT)

 .

Implementation Notes. Consider the case where we have no data for some
particular point in time t. In this case we should set the tth row and column
of L all equal to 0. This can be done an arbitrary number of times, which will
effectively result in K̄ and k̄ having integer coefficients that grow with possibly
different steps. Since a kernel multiplied by any scalar is still a kernel, we can
use real numbers for these coefficients, representing the actual real-world time
at which an example arrives. Therefore, the coefficients 1, . . . , T in K̄ and k̄ can
be replaced with nonnegative increasing real numbers t1, . . . , tT .

4 Empirical Results

4.1 Options Implied Volatility

The Russian Trading System Stock Exchange (RTSSE) have provided us with
data containing the details of options transactions on several underlying assets.
Options (see [1] for more detailed information on options) are a type of derivative
securities. They give the right to sell (put option) or buy (call option) an asset
(like stock) which has current price St at some particular strike price K at a
particular point in time in the future (at maturity). On a stock market, derivative
securities are mainly used for hedging, that is, as an insurance against possible
changes in the value of the underlying asset. Given this, what should the price
of an option be?

The most popular approach to pricing options is based on the Black-Scholes
theory. This assumes that St follows an exponential Wiener process with constant
volatility σ. The parameter σ cannot be observed directly, but it can be estimated
from market data such as the price history (this estimate is called historical
volatility). There are different types of options; we are interested in the so called
European options. In this case the price at time t of call and put options, which
we will denote by ct and pt respectively, are calculated by

ct = StN(d1)−KN(d2), and pt = ct + K − St ,

where N(x) is the probability density function of the normal distribution with
mean 0 and standard deviation 1, and given T which is the time until maturity
in years,

d1 =
ln(St/K) + (σ2/2)T

σ
√

T
, and d2 = d1 − σ

√
T .

In practise this model is often violated. Given the current prices of options
and the underlying asset we can find σ that satisfies the formulae above. This σ
is known as the implied volatility and it exhibits a dependence on the strike
price and the time to maturity. The curve showing the dependence of the implied
volatility on the strike price is often called the volatility smile (see [1, Chap. 16]).
If time to maturity is taken into account too, we get a volatility surface. The
existence of volatility smiles and surfaces contradicts the Black-Scholes model.
There is no generally recognised theory describing the phenomenon of implied
volatility; however, it remains a useful parameter and traders at a stock exchange
often use it to quote option prices.

We are interested in using learning theory methods for predicting implied
volatilities without assuming any model for its behaviour. In our experiments
we treat the implied volatility of a transaction as the outcome and the parameters
of the transaction and other market information (such as the current price of
the underlying asset) as the signal.

4.2 Experimentation Methodology

As usual, we need to find good values for any tunable parameters of the methods
employed. For the weights required by our new methods, specifically, WeCK-
AAR’s d1, . . . , dT and KAARCh’s t1, . . . , tT , we use a real number representing
the (normalised) time at which the transactions occurred. In our experiments
we use the spline kernel3 (see, for example, [8]) which does not require any pa-
rameters. Therefore we only need to find values for the parameter a (see (6), (8),
and (10)). We do this by the following crude procedure. We apply a sliding win-
dow approach (the window size was set to 50) and find a good value for a on
the first window; then we make predictions on the next window (therefore, the
parameter a is updated every 50 transactions). This is repeated for the whole
dataset. WeCKAAR and KAARCh function better if the mean of the outcomes
is 0. We achieve this by shifting the outcomes down by the mean of the outcomes
of the previous window and later shift the predictions up by this same amount.

4.3 Results

In Fig. 1 we show results on options data for EERU, GAZP and RTSI. EERU
are options on futures on shares of Unified Power Systems of Russia, GAZP are
options on futures on shares of Gazprom, and RTSI are options on an RTSI
index. The results show the cumulative square loss (therefore a smaller value
is better) suffered by the proprietary method used at the RTSSE, WeCKAAR,
KAARCh and KRR (applied using the same sliding window technique). The
proprietary method used at the RTSSE is based on Kalman Filters and some
assumptions on the shape of the volatility curve are made. This contrasts with
our methods, where we make no assumptions at all (our methods’ applicability
is not limited to options data) and use general purpose kernels.

5 Discussion

In the experiments carried out, both our methods performed better than the
proprietary method used at the RTSSE (and Kernel Ridge Regression). It also
seems that, in general, KAARCh may be better than the simpler method WeCK-
AAR. This is understandable, since KAARCh has a more advanced underlying
theory. Recall that the proprietary method used at the RTSSE was specifically
designed for this application. Moreover, it is constantly monitored and tuned
by experts to predict implied volatility better. Our methods are applicable to a
much more general area and still manage to perform better (even with the crude
experimentation methodology described). In fact, KAARCh and WeCKAAR can
be used wherever it makes sense to assume that the underlying dependency of
outcomes on signals can change with time.

Future work includes deriving a theoretical upper bound on the loss of
KAARCh and a better investigation of the empirical performance of our methods
on financial and other data, possibly using a better experimentation procedure.
3 The linear, polynomial and RBF kernels were also considered.

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

9

10

Transactions

C
um

ul
at

iv
e

S
qu

ar
e

Lo
ss

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

Transactions

C
um

ul
at

iv
e

S
qu

ar
e

Lo
ss

(a) (b)

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

Transactions

C
um

ul
at

iv
e

S
qu

ar
e

Lo
ss

RTSSE
KRR
WeCKAAR
KAARCh

(c) Legend

Fig. 1. Predictions on transactions for options on (a) EERU, (b) GAZP, and (c) RTSI.

Acknowledgements. The authors are grateful to Dr Michael Vyugin at the
RTSSE for providing the data and sharing his expertise with us. We would
also like to thank Prof Volodya Vovk and Prof Alex Gammerman for useful
discussions and comments.

References

1. Hull, J.C.: Options, Futures and Other Derivatives. 6th edn. Prentice Hall (2005)
2. Vovk, V.: Competitive on-line statistics. International Statistical Review 69(2)

(2001) 213–248
3. Hoerl, A.E.: Application of ridge analysis to regression problems. Chemical Engi-

neering Progress 58 (1962) 54–59
4. Busuttil, S., Kalnishkan, Y., Gammerman, A.: Improving the aggregating algorithm

for regression. In: Proceedings of the 25th IASTED International Conference on
Artificial Intelligence and Applications (AIA 2007), ACTA Press (2007) 347–352

5. Aizerman, M., Braverman, E., Rozonoer, L.: Theoretical foundations of the potential
function method in pattern recognition learning. Automation and Remote Control
25 (1964) 821–837

6. Saunders, C., Gammerman, A., Vovk, V.: Ridge regression learning algorithm in
dual variables. In: Proceedings of the 15th International Conference on Machine
Learning, Morgan Kaufmann (1998) 515–521

7. Gammerman, A., Kalnishkan, Y., Vovk, V.: On-line prediction with kernels and
the complexity approximation principle. In: Proceedings of the 20th Conference on
Uncertainty in Artificial Intelligence, AUAI Press (2004) 170–176

8. Schölkopf, B., Smola, A.J.: Learning with Kernels — Support Vector Machines,
Regularization, Optimization and Beyond. The MIT Press, USA (2002)

9. Beckenbach, E.F., Bellman, R.: Inequalities. Springer (1961)

A Lemmas

Lemma 1. Given a matrix A, a scalar a and I identity matrices of the appro-
priate size,

(AA′ + aI)−1A = A(A′A + aI)−1 .

Proof.

(AA′ + aI)−1A = (AA′ + aI)−1A(A′A + aI)(A′A + aI)−1

= (AA′ + aI)−1(AA′A + aA)(A′A + aI)−1

= (AA′ + aI)−1(AA′ + aI)A(A′A + aI)−1

= A(A′A + aI)−1

Lemma 2. Let Q(θ) = θ′Aθ + b′θ + c, where θ,b ∈ Rn, c is a scalar and A is
a symmetric positive definite n× n matrix. Then∫

Rn

e−Q(θ)dθ = e−Q0
πn/2

√
detA

,

where Q0 = minθ∈Rn Q(θ).

Proof. Let θ0 ∈ arg min Q. Take ξ = θ − θ0 and Q̃(ξ) = Q(ξ + θ0). It is easy
to see that the quadratic part of Q̃ is ξ′Aξ. Since 0 ∈ arg min Q̃, the form has
no linear term. Indeed, in the vicinity of 0 the linear term dominates over the
quadratic term; if Q̃ has a non-zero linear term, it cannot have a minimum at 0.
Since Q0 = minξ∈Rn Q̃(ξ), we can conclude that the constant term in Q̃ is Q0.
Thus Q̃(ξ) = ξ′Aξ + Q0.

It remains to show that
∫

Rn e−ξ′Aξdξ = πn/2/
√

detA. This can be proved by
considering a basis where A diagonalises (or see [9, Sect. 2.7, Theorem 3]).

Lemma 3. Let

F (A,b,x) = min
θ∈Rn

(θ′Aθ + b′θ + x′θ)− min
θ∈Rn

(θ′Aθ + b′θ − x′θ) ,

where b,x ∈ Rn and A is a symmetric positive definite n × n matrix. Then
F (A,b,x) = −b′A−1x.

Proof. It can be shown by differentiation that the first minimum is achieved at
θ1 = − 1

2A
−1(b + x) and the second minimum at θ2 = − 1

2A
−1(b − x). The

substitution proves the lemma.

